LUMILEDS™

LIGHT FROM SILICON VALLEY

Progress and Future Direction of LED Technology

Mike Krames, Lumileds Lighting

SSL Workshop 13 Nov, 2003 Arlington, VA

What is a light-emitting diode?

- Crystalline semiconductor atomic arrangement determines bandgap
 - Specifies optical properties
- Impurity doping provides p- and n-type regions
- At forward bias, injected electrons and holes recombine
- Energy may be released as radiative (light) or non-radiative (heat)
- Fundamentally non-destructive process

LED Fabrication

Evolution of LED Efficiency

External Quantum Efficiency = Internal QE x Extraction Efficiency

Internal Quantum Efficiency, η_{int} :

- material quality (defects, impurities)
- epitaxial layer structure and composition
- characteristics of material system
 - e.g. electronic bandstructure

Extraction Efficiency, C_{ext}:

- optical characteristics of chip
 - refractive index, $n_i > n_o$ (Snell's law)
 - "escape cone" ~ $\frac{1}{4} (n_o/n_i)^2$ (5-10% / surface)
- internal absorption (losses) inside chip
- geometry of chip (thick- vs. thin-film; shape)
- degree of scattering

High Extraction Efficiency Structures

Many options:

- Flipchip with reflective electrodes
- Conventional with transarent electrode & scattering features
- Thin-film with reflective intermetallic & scattering features
- Thick-film with die shaping

State of Art: Internal QE

Opportunity:

- Extraction efficiency: 2x increase max (theoretical limit)
- Internal quantum efficiency: up to 10x (!) at peak of eye sensitivity
- Example: At 100% η_{int} today's green LEDs would exceed <u>250 lm/W</u>

Making White

Issues:

Images courtesy Jeff Tsao (Sandia National Labs).

- Phosphor conversion
 - Quantum deficit, optical losses, new materials issues
- Color mixing
 - Optical losses (mixing), color uniformity, color control circuits

Phosphor-based White LEDs I

- Predominant: blue LED + YAG:Ce³⁺
- Production typical: ~ 30 lm/W (350 mA)
 - Conversion efficiency ~ 60%
- Laboratory results: > 60 lm/W (20 mA)
- Limitations:
 - ~ 4000-8000K
 - Low CRI: ~75 (max.)

Phosphor-based LEDs for Illumination

- Recent product release
- From YAG:Ce to YAG:Ce + CaS:Eu

CRI: ~75

~90

CCT: ~6000K ~3200K

 η_i : ~30 lm/W ~20 lm/W

- **Excellent match to blackbody radiation**
- Challenge: optical losses
 - Conversion efficiency ~ 40%

LUMILEDS

High-Fidelity, Tuneable White

- Prototype: to match D65 from ~420 to ~650 nm
- Mix of InGaN, AlGaInP and phosphor-based LEDs
- Color rendering, CRI = 96 (R_{a.14} = 94)
- RGB (3-line): CRI < 90

Packaging Technology

Backlighting and Light Tile Concepts

Reliability (1 Watt vs. "5 mm")

White Light Lumen Maintenance

- Standard 5 mm lamp LEDs degrade
 - Epoxy yellowing
- Luxeon 1 W (1x1 mm² chip; 350 mA)
 - 50 khrs to 70% light output (T_i < 90°C)

Higher Power LEDs (5 W)

15 W 110 lm/bulb 7 lm/W Incandescent

4 W 145 lm/bulb 36 lm/W Fluorescent

LuxeonTM 5W 150 lm/bulb 30 lm/W 2x2 mm² chip

> 10 W: new packages under development

Status vs. OIDA Roadmap

Product performance

		2002	2003	2007	2012	2020
Luminous Efficiency	lm/W	25	30 (20)	75	150	200
Lifetime	khrs	20	50*	20	100	100
Flux	lm	25	150 (24*)	200	1000	1500
Cost (Street Price)	\$/klm	\$200	\$160*	\$20	\$5	\$2
Color Rendering	Ra(8)	75	75 (90)	80	80	80
Markets Penetrated	-	low flux	low flux	incandescent	fluorescent	all
Source: OIDA 2002a			*1 W LEDs			

Outlook to 2007

Efficiency \rightarrow 2-4x Cost \rightarrow 8x (!)

Input power density $\rightarrow > 3x$

Increasing Power Density

- Standard power LED
 - 1 x 1 mm² chip: ~ 350 mA drive ea.
- New power LED (Luxeon III)
 - 1 x 1 mm² chip: up to ~ <u>1000 mA</u> drive ea.
 - Typical: 80 lm white (high CCT)
 - ~ 21 lm/W (T_i = 25°C)
 - Lifetime: 20khrs (50% brightness)
- Increasing power density costs efficiency
- Increasing temperature costs efficiency

The Future in Performance

- Largest cost reduction lever is ever more lm per mm²
 - Requires increased power density
 - Must maintain high efficiency (energy savings)
 - Better material quality (internal quantum efficiency)
 - Improved device structures (high current, high temperature)
 - High conversion/mixing efficiency (to white)
 - Thermal management
 - Robust packaging materials (high flux, high temperature)

Summary I

Sustained rapid progress into 21st century

- Phosphor-based White
 - Single-phosphor (CRI~75)
 - Production LEDs available with ~ 30 lm/W
 - Laboratory results > 60 lm/W
 - 1000-lumen prototypes demonstrated
 - Multi-phosphor
 - Color rendering: CRI ~ 90 at 20 lm/W
- Direct-based White
 - Demonstration high-fidelity white (D65 match, Ra>90)
 - Huge opportunity for improvement in green
 - Issues with temperature for AlGaInP
 - InGaN red?

Summary II

Challenges ahead

- Decreased \$/klm requires substantial increase in lumens per mm² of LED material
 - Better materials = largest gains
- Improved manufacturing technology for lower costs
 - e.g., better III-nitride epitaxy using in situ tools
- For substantial energy savings, must have technological entry point to large base of illumination market
 - Socket compatible solutions
 - How do we mate chip/level-1 platform to existing sockets?
 - Integrated thermal management
 - Imbedded circuitry for drive conditioning & color control

LEDs vs. Conventional Sources

